Electron-Induced Rippling in Graphene
نویسندگان
چکیده
منابع مشابه
Electron-induced rippling in graphene.
We show that the interaction between flexural phonons, when corrected by the exchange of electron-hole excitations, may drive the graphene sheet into a quantum critical point characterized by the vanishing of the bending rigidity of the membrane. Ripples arise then due to spontaneous symmetry breaking, following a mechanism similar to that responsible for the condensation of the Higgs field in ...
متن کاملElectric field-controlled rippling of graphene.
Metal-graphene interfaces generated by electrode deposition induce barriers or potential modulations influencing the electronic transport properties of graphene based devices. However, their impact on the local mechanical properties of graphene is much less studied. Here we show that graphene near a metallic interface can exhibit a set of ripples self-organized into domains whose topographic ro...
متن کاملIntrinsic rippling enhances static non-reciprocity in a graphene metamaterial.
In mechanical systems, Maxwell-Betti reciprocity means that the displacement at point B in response to a force at point A is the same as the displacement at point A in response to the same force applied at point B. Because the notion of reciprocity is general, fundamental, and is operant for other physical systems like electromagnetics, acoustics, and optics, there is significant interest in un...
متن کاملThermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity
Thermomechanical properties of monolayer graphene with thermal fluctuation are studied by both statistical mechanics analysis and molecular dynamics (MD) simulations. While the statistical mechanics analysis in the present study is limited by a harmonic approximation, significant anharmonic effects are revealed by MD simulations. The amplitude of out-ofplane thermal fluctuation is calculated fo...
متن کاملRippling ultrafast dynamics of suspended 2D monolayers, graphene.
Here, using ultrafast electron crystallography (UEC), we report the observation of rippling dynamics in suspended monolayer graphene, the prototypical and most-studied 2D material. The high scattering cross-section for electron/matter interaction, the atomic-scale spatial resolution, and the ultrafast temporal resolution of UEC represent the key elements that make this technique a unique tool f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2011
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.106.045502